代做IERG 4080、代寫Python程序語言

      時間:2024-04-17  來源:  作者: 我要糾錯



      IERG 4080 Assignment 4 (Mini Project)
      Individual project: each student should work on his/her own project
      Deadline: 23:59, 12 May 2024 (Sunday)
      15% of the final grade
      Overview
      In this mini project, you will deploy a machine learning application to AWS cloud service utilizing what you
      have learnt in this course. You are free to choose a topic and a machine learning task (or work on Assignment
      3) in which you are interested.
      The machine learning task does not have to be a very complicated one. The focus of this project should be on
      how the system is designed such that it is scalable.
      Your system should be implemented using Python 3, and deployed in AWS cloud (within the AWS Academy
      to avoid charges). You are free to use any open source packages or libraries in your project.
      If you have used AI tools or online resources, please make a explicit declaration in the front page of the
      report.
      Requirements
      Your project should implement the following kinds of features/functions:
      Machine Learning
      Your application should be powered by a machine learning model
      You can collect data and train a model for the task all by yourself
      You can also use existing pre-trained models available on the Internet, or even packages that
      implement specific machine learning applications
      You should provide functions in addition to simply applying the model to the user's input, such
      as allowing the user to retrieve the most recent predictions, or configure some settings to choose
      different models
      Network programming
      Using HTTP, or asynchronous messaging to implement clients and servers
      HTTP: Your service should be accessible with a URL, e.g., the HTTP part in Assignment 3
      Concurrent programming
      Using multi-threading, multi-processing or asyncio to achieve concurrent execution of tasks
      System design
      Consider which part(s) of the system is the bottleneck
      Design your system in such a way that it allows horizontal scaling
      Ideally, you should setup the AWS Auto Scaling Group and Load Balancing
      Your system should be able to support multiple concurrent users
      Use either asynchronous message queues, pub/sub systems, or caches to increase the
      throughput and scalability of your system
      Robustness
      You should prevent the application from crashing by validating inputs and catch possible
      exceptions wherever necessary
      User Interface
      You can use Telegram as your frontend (recommended), or you can develop your own interface
      using Python, or create a Web-based application
      Testing
      You shall use some load testing tools to benchmark your applications, e.g., Apache Bench,
      jMeter, Postman, ...
      Ideally, you shall run a first benchmark after your first successfuly deployment. Record the
      improvements after you extend your system.
      Note
      You will be invited to AWS Academy Learner Lab. From there, you have $100 credits and 4 hours lab
      time for each session (can be resumed). Remember to always test on your local PC, and keep a backup
      of your code in your PC or cloud storages like Github or OneDrive.
      The first challenging part would be deploying it to the cloud (you need to recall how to use ssh, scp,
      and related Linux techniques). The second challenging part is setting up auto scaling in AWS.
      Assessment Scheme
      Your project will be assessed using the criteria listed below:
      20% - Machine learning
      20% - Network programming
      20% - Concurrent programming
      20% - System design and complexity
      10% - Robustness
      10% - User Interface
      Other Topics
      Below are some possible topics for reference:
      Language detection
      Allow user to type in a sentence in a certain language, the system will detect which language the
      sentence is written in
      Gender and age prediction
      Take a photo of a person, and predict the gender and age of the person
      News classification
      Given a URL to a news article, the system will classify the news article into one of the major
      categories (e.g. sports, finance, technology, science, etc.)
      Audio to Text
      Let the user record a voice message in Telegram, the system will translate the audio into text
      Recommendation
      Allow users to rate items and the system will recommend new items to the users, e.g., movies,
      books, articles
      ...
      References and Resources
      Pre-trained Machine Learning Models
      https://huggingface.co/
      https://www.kaggle.com/models
      https://modelzoo.co/
      Programming Big Data System
      IERG4330 (K8s, Kafka, Spark, Hadoop)
      Some guides available online
      Deploying a flask application on an AWS EC2 instance
      Submission
      You should submit the following files to Blackboard:
      A README file containing brief description of each Python script, the dependencies (i.e. open source
      packages or libraries you have used), and instructions on how to run your programs
      All source codes
      Data files (if the data is larger than 10MB, upload to cloud storage and include links in the README
      file)
      A report in PDF format with the following information:
      Functions/features of your system
      e.g., the APIs, endpoints that receive user requests, and the backend workers/process.
      Description of your machine learning task (e.g. where did you get the data, what ML algorithm
      did you use, what is the performance of your model)
      A diagram of the system architecture
      Description of how your system is designed to be scalable
      with Load/Stress testing result

      請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp









       

      標簽:

      掃一掃在手機打開當前頁
    1. 上一篇:代寫AI3043 Bayesian Networks
    2. 下一篇:CS6238程序代寫、代做Python程序設計
    3. 無相關信息
      昆明生活資訊

      昆明圖文信息
      蝴蝶泉(4A)-大理旅游
      蝴蝶泉(4A)-大理旅游
      油炸竹蟲
      油炸竹蟲
      酸筍煮魚(雞)
      酸筍煮魚(雞)
      竹筒飯
      竹筒飯
      香茅草烤魚
      香茅草烤魚
      檸檬烤魚
      檸檬烤魚
      昆明西山國家級風景名勝區
      昆明西山國家級風景名勝區
      昆明旅游索道攻略
      昆明旅游索道攻略
    4. 幣安app官網下載 幣安app官網下載

      關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

      Copyright © 2023 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
      ICP備06013414號-3 公安備 42010502001045

      主站蜘蛛池模板: 彝良县| 红河县| 宿松县| 耿马| 鄂州市| 沐川县| 扬州市| 巴东县| 广饶县| 抚松县| 鸡西市| 青龙| 静宁县| 永嘉县| 湾仔区| 汤阴县| 乐山市| 集安市| 大田县| 卓资县| 南昌市| 镇安县| 军事| 陆河县| 来宾市| 金乡县| 承德县| 南开区| 鄱阳县| 武邑县| 陆川县| 宽甸| 安新县| 休宁县| 安福县| 美姑县| 定兴县| 峨眉山市| 台中市| 巢湖市| 鸡西市|